FFF 2.0: Field Flow Fractionation for the comprehensive Characterization of Proteins and Nanoparticles

Reaching the next level to characterize nanoparticles and proteins with Field-Flow Fractionation coupled to Multi-Angle Light Scattering

Dr. Christoph Johann, Wyatt Technology
Proteins conjugated with Nanoparticles ...

- Drug Delivery
- Molecular Biology
- Industrial applications

Dendrimers

Polymersomes, nanoparticles

Nanocapsules

Micelles

Liposomes

Proteins

Viruses

1 nm 10 nm 100 nm 1 µm
... need new analytical methods

Peptide Antibody Virus

HPLC-MS SEC
UHPLC-MS U-SEC

Field-Flow Fractionation
Eclipse FFF: Why use Field-Flow Fractionation

- True particle size distribution, can produce fractions
- High resolution
- Wide separation range from small macromolecules (nm) to large particles (µm)
- Powerful for analysis complex samples
- Gentle, low shear and non-destructive
- On-line absolute characterization from MALS
- Determines charge and charge distribution
- Robust and easy to use
Wyatt Eclipse – Complete System

- Seamlessly integrated and automated system
- Sophisticated data processing of shape, conformation, charge distribution
- Software supported method development
How Flow-FFF Separation Works

- Sample injected – by interaction with the cross-flow it is concentrated against the porous bottom wall
How Flow-FFF Separation Works

- The electrical field is added after focusing has taken place
How Flow-FFF Separation Works

- Separation based on diffusion against a cross-flow in a laminar flow stream
Flow-FFF - Retention Equation

\[t_R = \frac{w^2}{6D_i} \ln\left(1 + \frac{F_x}{F_c}\right) \]

- \(t_r \) retention time
- \(w \) channel thickness
- \(F_x \) cross-flow rate
- \(F_c \) flow rate to the detector
- \(D_i \) diffusion coefficient

Retention depends on the flow rate ratio only, not the length or width of the channel (with given \(D_i \) and channel height)
Human Polyoma VPL particles for gene delivery

- Analysis is critical for optimizing VLP reassembly

VISION – integrated software suite
Method development with SCOUT

- Define a set of sizes which represent the sample
Sample Definition

Components

<table>
<thead>
<tr>
<th>ID</th>
<th>Description</th>
<th>Mass Fraction [%]</th>
<th>Hydrodynamic Radius [nm]</th>
<th>Electrophoretic Mobility [10^-9 m²/(V·s)]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3020A</td>
<td>30,00</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3050A</td>
<td>50,00</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3100A</td>
<td>20,00</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

Solvent Properties

- **Solvent**: Water
- **Temperature**: 25.00 °C
- **Conductivity**: 0 S/m

Inject

- **Volume**: 20 µL
- **Concentration**: 3.4 mg/mL
Method development with SCOUT

- Define a set of sizes which represent the sample
- Select a channel geometry
- Develop the flow program to show a satisfactory separation
- Export the method to VOYAGER and run it
Method development in SCOUT II
Running a sample sequence in VOYAGER
Comparison of simulation and experiment

- Simulation for the three polystyrene latex samples
- Experiment with excellent agreement to the simulation
Method Optimization in SCOUT
Method Optimization in SCOUT

![Graph showing method optimization in SCOUT with various curves and annotations.](image-url)
Comparison simulation and experiment

- Overlay of experiment and simulation
- Overlay of the initial and optimized experiment
Size distribution based on calibration
Post run view of system traces
Comprehensive set of results

- Hydrodynamic radius
- Electrophoretic mobility
- Zeta potential
- Conductivity
- pH values
- Temperature

VISION + MOBILITY
Principle of Electrical Flow-FFF

- EAF4 uses both force fields to generate a separation plus measurement of electrophoretic mobility
Improving Separation I

- Species of same size but different charge can be separated
Improving Separation II

- Different charge will move to shorter and longer retention time.
- With a series of increasing electrical field, the shift will increase proportionally.
Theory I

\[t_R = \frac{w^2}{6D} \cdot \ln(1 + \frac{f \cdot F_c}{F_{out}}) \]

- Retention in A4F depends on the ratio of flow rates
- Consider mobility and electrical field

\[\mu = \frac{v_{EP}}{E} \quad E = \frac{U}{d} = \frac{I \cdot R}{d} = \frac{I}{A_{el} \cdot k} \]

- \(\mu \) can be determined, if the drift velocity \(v_{EP} \), electrical current \(I \) and the conductivity \(k \) are known, therefore conductivity has to be measured
- Under the influence of a cross-flow and the electrical field \(E \) the drift velocity has two components

\[v = v_c + v_{EP} \quad v_c = \frac{F_c}{A_{el}} \]
Theory II

\[\nu_{EP} = e^\left(\frac{t_{RI} \cdot \ln(1 + \frac{f \cdot F_c}{F_{out}})}{t_R} \right) - \left(1 + \frac{f \cdot F_c}{F_{out}} \right) \cdot \frac{F_{out}}{A_{el} \cdot f} \]

- At constant cross-flow the drift velocity is given by a simple equation
- For cross-flow gradients, a discretization algorithm has to be used
- Knowing size from MALS, DLS or FFF retention time, the zeta potential can be calculated
Instrument and Method to Determine the Electrophoretic Mobility of Nanoparticles and Proteins by Combining Electrical and Flow Field-Flow Fractionation

Christoph Johann,* Stephan Elseng,† Horst Schuch,‡ and Ulrich Rösch‡

†Wyatt Technology Europe GmbH, Hochstrasse 18, DE-63607 Dernbach, Germany
‡Superon GmbH, Hochstrasse 12, DE-63607 Dernbach, Germany

Supporting Information

ABSTRACT: A new FFF method is presented which combines asymmetrical flow-FFF (AF4) and electrical FFF (EIFFF) in one channel to electrical asymmetrical flow-FFF (EAF4) to overcome the restrictions of pure EIFFF. It allows for measuring electrophoretic mobility (μ) as a function of size. The method provides an absolute value and does not require calibration. Results of μ for two particle standards are in good agreement with values determined by phase analysis light scattering (PALS). There is no requirement for low ionic strength carriers with EAF4. This overcomes one of the main limitations of EIFFF, making it feasible to measure proteins under physiological conditions. EAF4 has the capability to determine μ for individual populations which are resolved into separate peaks. This is demonstrated for a mixture of three polystyrene latex particles with different sizes as well as for the monomer and dimer of BSA and an antibody. The experimental setup consists of an AF4 channel with added electrodes; one is placed beneath the frit at the bottom wall and the other covers the inside of the upper channel plate. This design minimizes contamination from the electrolysis reactions by keeping the particles distant from the electrodes. In addition the applied voltage range is low (1.5–5 V), which reduces the quantity of gaseous electrolysis products below a threshold that interferes with the laminar flow profile or detector signals. Besides measuring μ, the method can be useful to improve the separation between sample components compared to pure flow-FFF. For two proteins (BSA and a monoclonal antibody), enhanced resolution of the monomer and dimer is achieved by applying an electric field.
Mix of 3 Duke Latex 23, 46, 102 nm

<table>
<thead>
<tr>
<th>Hydrodynamic Radius [nm]</th>
<th>Diffusion Coefficient $[10^{-12} \text{ m}^2/\text{s}]$</th>
<th>Electrophoretic Mobility $[10^{-8} \text{ m}^2/(\text{V} \cdot \text{s})]$</th>
<th>Net Charge</th>
<th>Zeta Potential [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>21,603 ± 0</td>
<td>10,5 ± 0</td>
<td>-4,2603 ± 0,14</td>
<td>-127,7 ± 4,11</td>
<td>-86,68 ± 2,79</td>
</tr>
<tr>
<td>42,669 ± 0</td>
<td>5,315 ± 0</td>
<td>-5,8125 ± 0,17</td>
<td>-405,6 ± 11,6</td>
<td>-117,6 ± 3,37</td>
</tr>
<tr>
<td>82,379 ± 0</td>
<td>2,753 ± 0</td>
<td>-5,385 ± 0,13</td>
<td>-925,9 ± 22,9</td>
<td>-107,3 ± 2,65</td>
</tr>
</tbody>
</table>
Native MAb

- Very small positive charge, minor influence of the field on the peak shape

<table>
<thead>
<tr>
<th>Hydrodynamic Radius [nm]</th>
<th>Diffusion Coefficient [10^{-12} m²/s]</th>
<th>Electrophoretic Mobility [10^{-8} m²/(V⋅s)]</th>
<th>Net Charge [mV]</th>
<th>Zeta Potential [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0492 ± 0.0242</td>
<td>48.6 ± 0.23</td>
<td>0.39779 ± 0.38</td>
<td>2.657 ± 2.57</td>
<td>7.628 ± 7.37</td>
</tr>
</tbody>
</table>
Stressed MAb

- Significant higher positive charge, striking strong influence of the field on the peak shape, at -20mA the peak tailing has disappeared

<table>
<thead>
<tr>
<th>Hydrodynamic Radius [nm]</th>
<th>Diffusion Coefficient $[10^{-12} \text{ m}^2/\text{s}]$</th>
<th>Electrophoretic Mobility $[10^{-8} \text{ m}^2/(\text{V} \cdot \text{s})]$</th>
<th>Net Charge</th>
<th>Zeta Potential [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.338 ± 0.00812</td>
<td>45.97 ± 0.07</td>
<td>2.8179 ± 0.82</td>
<td>25.17 ± 7.32</td>
<td>53.48 ± 15.6</td>
</tr>
</tbody>
</table>
One-Click-Analysis – From template to instant results

Perfect reproducibility

All charge related results in one clear table

<table>
<thead>
<tr>
<th>Peak ID</th>
<th>Hydrodynamic Radius [nm]</th>
<th>Diffusion Coefficient [10^{-12} m²/s]</th>
<th>Electrophoretic Mobility [10^{-8} m²/(V·s)]</th>
<th>Net Charge</th>
<th>Zeta Potential [mV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.291 ± 0.269</td>
<td>10.91 ± 0.025</td>
<td>-2.9675 ± 0.093</td>
<td>-90.54 ± 2.85</td>
<td>-52.31 ± 1.65</td>
</tr>
</tbody>
</table>

Full sequence of 20 runs imported in one step
Exosome and exomere isolation and characterization

Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation

- Eclipse AF4 + fraction collector: Isolation of different exosome subpopulations
- DAWN HELEOS MALS with embedded DLS: Identification by size
Identification: Radius by online DLS (low sensitivity)

Identification: Radius by MALS (low load, high sensitivity)

- Size of all three subpopulations could be determined by online MALS even at low peak concentration due to low loading.
Quantitation: particle concentration by MALS

- Both size and particle counts can be measured online by Wyatt DAWN HELEOS MALS detector

![Graph showing number density and radius over time](image-url)
EAF4-MALS-DLS: advanced platform for exosome and exomere isolation and characterization

- Isolation and fraction collection by size (Exo-S, Exo-L, exomeres)
- Online biophysical characterization:
 - Size (Rg and Rh), shape
 - Quantitative, high-resolution concentration vs. size
 - Charge & zeta potential
 - Relative protein, lipid, RNA/DNA content
Summary

- The Wyatt Eclipse Flow-FFF system is a powerful tool to characterize complex nanomaterials
- It is based on efficient separation coupled to online molar mass and size measurement with a Wyatt MALS detector
- Eclipse Mobility allows to determine charge and charge distribution in complex samples
- The system is fully integrated with the new software VISION and provides a seamless workflow from method development to final result
- We have seen application examples for polymer latex, proteins and exosome isolation and characterization
Thank you for your attention

Questions?